skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An improved bi-level algorithm for partitioning dynamic structured grid hierarchies.

Conference ·
OSTI ID:947255

Structured adaptive mesh refinement methods are being widely used for computer simulations of various physical phenomena. Parallel implementations potentially offer realistic simulations of complex three-dimensional applications. But achieving good scalability for large-scale applications is non-trivial. Performance is limited by the partitioner's ability to efficiently use the underlying parallel computer's resources. Designed on sound SAMR principles, Nature+Fable is a hybrid, dedicated SAMR partitioning tool that brings together the advantages of both domain-based and patch-based techniques while avoiding their drawbacks. But the original bi-level partitioning approach in Nature+Fable is insufficient as it for realistic applications regards frequently occurring bi-levels as 'impossible' and fails. This document describes an improved bi-level partitioning algorithm that successfully copes with all possible hi-levels. The improved algorithm uses the original approach side-by-side with a new, complementing approach. By using a new, customized classification method, the improved algorithm switches automatically between the two approaches. This document describes the algorithms, discusses implementation issues, and presents experimental results. The improved version of Nature+Fable was found to be able to handle realistic applications and also to generate less imbalances, similar box count, but more communication as compared to the native, domain-based partitioner in the SAMR framework AMROC.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
947255
Report Number(s):
SAND2006-0966C; TRN: US200909%%140
Resource Relation:
Conference: Proposed for presentation at the SIAM Parallel processing for scientific computing 2006 held February 22-24, 2006 in San Francisco, CA.
Country of Publication:
United States
Language:
English