skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: NP1EC Degradation Pathways Under Oxic and Microxic Conditions

Journal Article · · Environmental Science & Technology, 42(17):6409-6414
DOI:https://doi.org/10.1021/es702561t· OSTI ID:937376

The degradation pathway of nonylphenol ethoxyacetic acid (NP1EC) and the conditions favoring CAP1EC formation were studied in aerobic microcosms constructed with soil from the Mesa soil aquifer treatment (SAT) facility (Arizona, USA) and pristine sediments from Coyote Creek (California, USA). In the Mesa microcosms, para-NP1EC was transformed to para-NP, before being rapidly transformed to nonyl alcohols via ipso-hydroxylation. While the formation of NP from APEMs has been observed by several researchers under anaerobic conditions, this is the first time the transient formation of NP from APEMs has been observed under aerobic conditions. Unlike the Mesa microcosms, large quantities of CAP1ECs were observed in the Coyote Creek microcosms. Initially, CA8P1ECs were the dominant metabolites, but as biodegradation continued, CA6P1ECs became the dominant metabolites. Compared to the CA8P1ECs, the number of CA6P1ECs peaks observed was small (<6) even though their concentrations were high. This suggests that several CA8P1ECs are degraded to only a few CA6P1EC isomers (i.e., the degradation pathway converges) or that some CA6P1EC metabolites are significantly more recalcitrant than others. The different biodegradation pathways observed in the Mesa and Coyote Creek microcosms result from the limited availability of dissolved oxygen in the Coyote Creek microcosms. In both sets of microcosms, the ortho isomers were transformed more slowly than the para isomers and in the Coyote Creek microcosms several ortho-CAP1ECs were observed. In addition, several unknown metabolites were observed in the Coyote Creek microcosms that were not seen in the abiotic or Mesa microcosms; these metabolites appear to be CAP1EC metabolites, have a -CH2-C6H4- fragment, and contain one carboxylic acid. Nitro-nonylphenol was observed in the Mesa microcosms, however, further experimentation illustrated that it was the product of an abiotic reaction between nitrite and nonylphenol under acidic conditions.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
937376
Report Number(s):
PNNL-SA-58427; TRN: US200819%%101
Journal Information:
Environmental Science & Technology, 42(17):6409-6414, Vol. 42, Issue 17
Country of Publication:
United States
Language:
English