skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Soot formation in turbulent nonpremixed kerosine-air flames burning at elevated pressure: Experimental measurement

Book ·
OSTI ID:93209
; ;  [1]
  1. Cranfield Inst. of Technology, Bedford (United Kingdom). School of Mechanical Engineering

Detailed scalar property maps have been constructed for turbulent jet flames of prevaporized kerosine, burning in a coflowing air stream and confined within an optically accessed cylindrical chamber, which permits operation at elevated pressure. Time-averaged measurements of spatially resolved soot volume fraction by path-integrated laser absorption and tomographic inversion, temperature by fine wire thermocouple, and mixture fraction by microprobe sampling and mass spectrometric analysis are reported at chamber pressures from 1 to 6.4 bar. While the principal objective of the study has been to develop a database for modelling and computational prediction, the centerline data admit presentation in a standardized form, based on the centerline flame length to the maximum soot concentration, which permits analysis of the pressure dependence from turbulent flames of differing sizes. In this form, the peak soot volume fractions and soot formation rates appear linearly dependent on pressure, exhibiting a peak mass fraction of soot carbon of 7%, substantially independent of pressure. The peak soot loading, at the highest pressure investigated, approaches 120 gm{sup {minus}3} before complete laser extinction renders the flame inaccessible to further measurement. The high carbon loading and enhanced radiative loss lead to reduced mean temperatures throughout the flame by comparison with more widely studied gaseous fuels such as ethylene. Measured temperatures do not exceed 1,438 K anywhere on the centerline of the flame at 1 bar, for example.

OSTI ID:
93209
Report Number(s):
CONF-940711-; TRN: IM9537%%252
Resource Relation:
Conference: 25. international symposium on combustion, Irvine, CA (United States), 31 Jul - 5 Aug 1994; Other Information: PBD: 1994; Related Information: Is Part Of Twenty-fifth symposium (international) on combustion; PB: 1838 p.
Country of Publication:
United States
Language:
English