skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The effect of processing conditions on microstructure of Pd-containing activated carbon fibers

Journal Article · · Carbon

Palladium-doped activated carbon fibers are being evaluated as candidate materials for enhanced hydrogen storage at near ambient conditions. Pd-doped fibers were spun using a Pd salt mixed with an isotropic pitch precursor. Experimental techniques such as in-situ X-ray analysis, thermogravimetric studies, scanning transmission electron microscopy and gas adsorption were employed to understand how processing conditions for the production of Pd-doped activated carbon fibers affect the microstructure, pore development, and dispersion of metal particles throughout the fibers. The results showed that PdO phase is present in the stabilized fibers and that this oxide phase is stable up to about 250 aC. The oxide phase transforms into Pd metal with increasing heat treatment temperature, going through the formation of an intermediate carbide phase. Sintering of Pd particles was observed with heat treatment at temperatures over 750 aC. It was also found that pore development during physical activation with CO2 was not significantly affected by the presence of Pd particles within the fibers.

Research Organization:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). High Temperature Materials Lab. (HTML)
Sponsoring Organization:
USDOE Office of Science (SC)
DOE Contract Number:
DE-AC05-00OR22725
OSTI ID:
930994
Journal Information:
Carbon, Vol. 46, Issue 1; ISSN 0008-6223
Country of Publication:
United States
Language:
English