skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Coprecipitation of Chromate with Calcite: Batch Experiments and X-ray Absorption Spectroscopy

Journal Article · · Geochimica et Cosmochimica Acta

Batch experiments, combined with in situ spectroscopic methods, are used to examine the coprecipitation of Cr(VI) with calcite, including partitioning behavior, site-specific distribution of Cr on the surface of calcite single crystals, and local coordination of Cr(VI) in the calcite structure. It is found that the concentration of Cr incorporated in calcite increases with increasing Cr concentration in solution. The calculated apparent partition coefficient, K{sub d}*, is highest at low Cr solution concentration, and decreases to a constant value with increasing Cr solution concentration. DIC images of the (1 0 {bar 1} 4) surface of calcite single crystals grown in the presence of CrO{sub 4}{sup 2-}exhibit well-defined growth hillocks composed of two pairs of symmetrically nonequivalent vicinal faces, denoted as + and -, which reflect the orientation of structurally nonequivalent growth steps. Micro-XRF mapping of the Cr distribution over a growth hillock shows preferential incorporation of Cr into the -- steps, which is considered to result from differences in surface structure geometry. XANES spectra confirm that incorporated Cr is hexavalent, and no reduction of Cr(VI) in the X-ray beam was observed up to 2 days at room temperature. EXAFS fit results show the incorporated Cr(VI) has the expected first shell of 4 O at {approx}1.64 {+-} 0.01 {angstrom}, consistent with CrO{sub 4}{sup 2-}. Best fit results show that the second shell is split with {approx}2.5 Ca at {approx}3.33 {+-} 0.05 and {approx}2.2 Ca at 3.55 {+-} 0.05 {angstrom}, which confirms the incorporation of chromate into calcite. Consideration of possible local coordination indicates that significant distortion or disruption is required to accommodate CrO{sub 4}{sup 2-}in the calcite structure.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
930338
Report Number(s):
BNL-81049-2008-JA; GCACAK; TRN: US200904%%632
Journal Information:
Geochimica et Cosmochimica Acta, Vol. 71, Issue 6; ISSN 0016-7037
Country of Publication:
United States
Language:
English