skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Zinc Induces Dimerization of the Class II Major Histocompatibility Complex Molecule That Leads to Cooperative Binding to a Superantigen

Journal Article · · Journal of Biological Chemistry
OSTI ID:930329

Dimerization of class II major histocompatibility complex (MHC) plays an important role in the MHC biological function. Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing specific T cell receptor V{beta} elements. Here we have used structural, sedimentation, and surface plasmon resonance detection approaches to investigate the molecular interactions between MAM and the class II MHC molecule HLA-DR1 in the context of a hemagglutinin peptide-(306-318) (HA). Our results revealed that zinc ion can efficiently induce the dimerization of the HLA-DR1/HA complex. Because the crystal structure of the MAM/HLA-DR1/hemagglutinin complex in the presence of EDTA is nearly identical to the structure of the complex crystallized in the presence of zinc ion, Zn{sup 2+} is evidently not directly involved in the binding between MAM and HLA-DR1. Sedimentation and surface plasmon resonance studies further revealed that MAM binds the HLA-DR1/HA complex with high affinity in a 1:1 stoichiometry, in the absence of Zn{sup 2+}. However, in the presence of Zn{sup 2+}, a dimerized MAM/HLA-DR1/HA complex can arise through the Zn{sup 2+}-induced DR1 dimer. In the presence of Zn{sup 2+}, cooperative binding of MAM to the DR1 dimer was also observed.

Research Organization:
Brookhaven National Lab. (BNL), Upton, NY (United States). National Synchrotron Light Source
Sponsoring Organization:
Doe - Office Of Science
DOE Contract Number:
DE-AC02-98CH10886
OSTI ID:
930329
Report Number(s):
BNL-81040-2008-JA; JBCHA3; TRN: US200904%%623
Journal Information:
Journal of Biological Chemistry, Vol. 282; ISSN 0021-9258
Country of Publication:
United States
Language:
English