skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Development and Evaluation of a Simple Algorithm to Find Cloud Optical Depth with Emphasis on Thin Ice Clouds

Journal Article · · Open Atmospheric Science Journal, 2:46-55

We present here an algorithm for determining cloud optical depth, τ, using data from shortwave broadband irradiances, focusing on the case of optically thin clouds. This method is empirical and consists of applying a one-line equation to the shortwave flux analysis described by Long and Ackerman (2000). We apply this method to cirrus clouds observed at the Atmospheric Radiation Measurement Program’s (ARM) Darwin, Australia site during the Tropical Warm Pool International Cloud Experiment (TWP-ICE) campaign and cirrus clouds observed at ARM’s Southern Great Plains (SGP) site. These cases were chosen because independent verification of cloud optical depth retrievals is possible. For the TWP-ICE case, the calculated optical depths compare favorably (to within about 1 unit) with a “first principles” τ calculated from a vertical profile of ice particle size distributions obtained from an aircraft sounding. For the SGP case, the results from the algorithm correspond reasonably well with τ values obtained from an average over other methods; some of which have been subject to independent verification. The medians of the two time series are 0.79 and 0.81, for the empirical and averaged values, respectively (although such close agreement is likely to be fortuitous). This tool may be applied wherever measurements of the three components of the shortwave broadband flux are available at 1- to 5-minute resolution. Because these measurements are made across the world, it then becomes possible to estimate optical depth at many locations.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
927700
Report Number(s):
PNNL-SA-58232; KP1205010; TRN: US200816%%1165
Journal Information:
Open Atmospheric Science Journal, 2:46-55, Vol. 2
Country of Publication:
United States
Language:
English