skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Two-Phase Flow Simulations through Experimentally Studied Porous Media Analogies

Conference ·
OSTI ID:917004

The amount of CO2 that can be sequestered in deep brine reservoirs is dependant on fluid-fluid-solid interactions within heterogeneous porous media. Displacement of an in-place fluid by a less viscous invading fluid does not displace 100% of the defending fluid, due to capillary and viscous fingering. This has been studied experimentally and numerically with the use of pore-throat flow cells and pore-level models, respectively, in the last two decades. This current work solves the full Navier-Stokes and continuity equations in a random pore-throat geometry using the Volume of Fluid (VOF) method. To verify that the VOF model can be accurately applied within narrow apertures, qualitative agreement with the well-documented phenomenon of viscous fingering in a Hele-Shaw cell is first presented. While this motion is similar to the fingering observed in geological media, the random structure of rock restricts flow patterns not captured by flow in Hele-Shaw cells. To mimic this heterogeneous natural geometry, a novel experimental flowcell was created. Experiments of constant-rate injection of air into the water saturated model are described. This situation, where a non-wetting, invading fluid displaces a surface-wetting, more-viscous fluid, is known as drainage. As the injection flow rate was increased, a change from stable displacement fronts to dendritic fingering structures was observed, with a corresponding decrease in the fractal dimension of the interface and a decrease in the final saturation of invading air. Predictions of the VOF computational modeling within the same flowcell geometry are then shown to be in good agreement with the experimental results. Percent saturation and the fractal dimension of the invading fluid were calculated from the numerical model and shown to be similar to the experimental findings for air invasion of a watersaturated domain. The fluid properties (viscosity and density) were than varied and the viscosity ratio and capillary number of the fluids were shown to affect the percent of displaced fluid, with lower capillary number and higher viscosity ratio displacing a greater amount of the wetting fluid. Displacement of a non-wetting, in-place fluid by a less viscous, wetting fluid (the case of imbibition; contact angle > 90°) is then studied with the numerical model. The invading fluid is shown to preferentially move into small throats and displace a larger percent of the in-place fluid than observed in the drainage case. The interface was also observed to have a higher fractal dimension, closer to 2. These results highlight the potential for greater fundamental understanding of liquid-gas-solid interactions in heterogeneous, porous media that can be obtained from computational fluid dynamics (CFD). Situations, which are difficult to experimentally study, can be examined with CFD in a manner that more accurately accounts for the geological conditions relevant to CO2 sequestration. This allows for greater accuracy in the prediction of storage capacity within known geological structures. This study shows that as the contact angle between the invading fluid and the defending fluid increase, a greater portion of the porous medium is invaded. Thus, a greater portion of CO2 can be sequestered in reservoirs that are not strongly water wet. Low flow rates are shown to increase the final percent saturation of the invading fluid as well, regardless of wetting conditions.

Research Organization:
National Energy Technology Laboratory (NETL), Pittsburgh, PA, Morgantown, WV, and Albany, OR (United States)
Sponsoring Organization:
USDOE - Office of Fossil Energy (FE)
DOE Contract Number:
None cited
OSTI ID:
917004
Report Number(s):
DOE/NETL-IR-2007-178; TRN: US200816%%65
Resource Relation:
Conference: 6th International Conference on Multiphase Flow, Leipzig, Germany, July 9-13, 2007
Country of Publication:
United States
Language:
English