skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Simulating Field-Scale Soil Organic Carbon Dynamics Using EPIC

Journal Article · · Soil Science Society of America Journal, 71(4):1174-1185

Simulation models integrate our knowledge of soil organic C (SOC) dynamics and are useful tools for evaluating impacts of crop management on soil C sequestration; yet, they require local calibration. Our objectives were to calibrate the Environmental Policy Integrated Climate (EPIC) model, and evaluate its performance for simulating SOC fractions as affected by soil landscape and management. An automated parameter optimization procedure was used to calibrate the model for a site-specific experiment in the Coastal Plain of central Alabama. The ability of EPIC to predict corn (Zea mays L.) and cotton (Gossypium hirsutum L.) yields and SOC dynamics on different soil landscape positions (summit, sideslope and drainageway) during the initial period of conservation tillage adoption (5 years) was evaluated using regression and mean squared deviations. Simulated yield explained 88% of measured yield variation, with greatest disagreement on the sideslope position and highest agreement in the drainageway. Simulations explained approximately 1, 34 and 40% of the total variation in microbial biomass C (MBC), particulate organic C (POC) and total organic C (TOC), respectively. Lowest errors on TOC simulations (0-20 cm) were found on the sideslope and summit. We conclude that the automated parameterization was generally successful, although further work is needed to refine the MBC and POC fractions, and to improve EPIC predictions of SOC dynamics with depth. Overall, EPIC was sensitive to spatial differences in C fractions that resulted from differing soil landscape positions. The model needs additional refinement for accurate simulations of field-scale SOC dynamics affected by short-term management decisions.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
915293
Report Number(s):
PNNL-SA-54499; SSSJD4; KP1208000; TRN: US200817%%443
Journal Information:
Soil Science Society of America Journal, 71(4):1174-1185, Vol. 71, Issue 4; ISSN 0361-5995
Country of Publication:
United States
Language:
English