SciTech Connect

Title: Novel Smart Windows Based on Transparent Phosphorescent OLEDs

Novel Smart Windows Based on Transparent Phosphorescent OLEDs In this program, Universal Display Corporation (UDC) and Princeton University developed the use of white transparent phosphorescent organic light emitting devices (PHOLEDs{trademark}) to make low-cost ''transparent OLED (TOLED) smart windows'', that switch rapidly from being a highly efficient solid-state light source to being a transparent window. PHOLEDs are ideal for large area devices, and the UDC-Princeton team has demonstrated white PHOLEDs with efficiencies of >24 lm/W at a luminance of 1,000 cd/m{sup 2}. TOLEDs have transparencies >70% over the visible wavelengths of light, but their transparency drops to less than 5% for wavelengths shorter than 350 nm, so they can also be used as ultraviolet (UV) light filters. In addition to controlling the flow of UV radiation, TOLEDs coupled with an electromechanical or electrically activated reflecting shutter on a glass window can be employed to control the flow of heat from infrared (IR) radiation by varying the reflectance/transparency of the glass for wavelengths greater than 800nm. One particularly attractive shutter technology is reversible electrochromic mirrors (REM). Our goal was therefore to integrate two innovative concepts to meet the U.S. Department of Energy goals: high power efficiency TOLEDs, plus electrically controlled reflectors to produce a ''smart window''. Our efforts during this more » one year program have succeeded in producing a prototype smart window shown in the Fig. I, below. The four states of the smart window are pictured: reflective with lamp on, reflective with lamp off, transparent with lamp on, and transparent with lamp off. In the transparent states, the image is an outdoor setting viewed through the window. In the reflective states, the image is an indoor setting viewed via reflection off the window. We believe that the integration of our high efficiency white phosphorescent TOLED illumination source, with electrically activated shutters represents an innovative low-cost approach to conserving energy, and such innovative approaches are required to drive towards the DOE's goal of a 50% reduction in electric lighting consumption by 2020, and an energy efficient building. Furthermore, the team of UDC and Princeton University is ideally suited to develop and demonstrate this technical approach because of our recognized expertise in the fields of PHOLED and OLED technologies. « less
Authors: ;
Publication Date:
OSTI Identifier:OSTI ID: 912695
DOE Contract Number:FC26-05NT42322
Resource Type:Technical Report
Research Org:Universal Display Corporation
Sponsoring Org:USDOE
Country of Publication:United States
Language:English
Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; DESIGN; WINDOWS; LIGHT EMITTING DIODES; ORGANIC COMPOUNDS; ENERGY EFFICIENCY; ENERGY CONSERVATION; OPACITY