skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Gas-Phase Condensation Reactions of SixOyHz- Oxyanions with H2O

Journal Article · · Journal of Physical Chemistry A
DOI:https://doi.org/10.1021/jp010905e· OSTI ID:912048

Water was reacted with gas-phase oxyanions having the general composition SixOyHz- that were formed and isolated in an ion trap-secondary ion mass spectrometer (IT-SIMS). The radical SiO2- reacted slowly with H2O to abstract HO, forming SiO3H-, at a rate of 8 × 10-13 cm3 molecule-1 s-1, corresponding to an efficiency of about 0.03% compared with the theoretical collision rate constant (average dipole orientation). The product ion SiO3H- underwent a consecutive condensation reaction with H2O to form SiO4H3- at a rate that was approximately 0.4-0.7% efficient. SiO4H3- did not undergo further reaction with water. The multiple reaction pathways by which radical SiO3- reacted with H2O were kinetically modeled using a stochastic approach. SiO3- reacted with water by three parallel reaction pathways: (1) abstraction of a radical H to form SiO3H-, which then reacted with a second H2O to form SiO4H3-; (2) abstraction of a radical OH to form SiO4H-, which further reacted by consecutive H abstractions to form SiO4H2- and then SiO4H3-; and (3) condensation with H2O to form SiO4H2-, which subsequently abstracted a radical H from a second H2O to form SiO4H3-. In all of these reactions, the rate constants were determined to be very slow, as determined by both direct measurement and stochastic modeling. For comparison, the even electron ion Si2O5H- was also investigated: it underwent condensation with H2O to form Si2O6H3-, with a rate constant corresponding to 50% efficiency. The reactions were also modeled using ab initio calculations at the UB3LYP/6-311+G(2d,p) level. Addition of H2O to SiO3-, SiO3H-, and Si2O5H- was calculated to be approximately 42, 45, and 55 kcal mol-1 exothermic, respectively, and encountered low activation barriers. Modeling of SiO2- and SiO3- reactions with H2O failed to produce radical abstraction reaction pathways observed in the IT-SIMS, possibly indicating that alternative reaction mechanisms are operative.

Research Organization:
Idaho National Lab. (INL), Idaho Falls, ID (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
DE-AC07-99ID-13727
OSTI ID:
912048
Report Number(s):
INEEL/JOU-01-00361; TRN: US200801%%488
Journal Information:
Journal of Physical Chemistry A, Vol. 105, Issue 42
Country of Publication:
United States
Language:
English