skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Modeling the brain-pituitary-gonad axis in salmon

Journal Article · · Marine Environmental Research, 62(Supplement):S426-S432

To better understand the complexity of the brain-pituitary-gonad axis (BPG) in fish, we developed a biologically based pharmacodynamic model capable of accurately predicting the normal functioning of the BPG axis in salmon. This first-generation model consisted of a set of 13 equations whose formulation was guided by published values for plasma concentrations of pituitary- (FSH, LH) and ovary- (estradiol, 17a,20b-dihydroxy-4-pregnene-3-one) derived hormones measured in Coho salmon over an annual spawning period. In addition, the model incorporated pertinent features of previously published mammalian models and indirect response pharmacodynamic models. Model-based equations include a description of gonadotropin releasing hormone (GnRH) synthesis and release from the hypothalamus, which is controlled by environmental variables such as photoperiod and water temperature. GnRH stimulated the biosynthesis of mRNA for FSH and LH, which were also influenced by estradiol concentration in plasma. The level of estradiol in the plasma was regulated by the oocytes, which moved along a maturation progression. Estradiol was synthesized at a basal rate and as oocytes matured, stimulation of its biosynthesis occurred. The BPG model can be integrated with toxico-genomic, -proteomic data, allowing linkage between molecular based biomarkers and reproduction in fish.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
891432
Report Number(s):
PNWD-SA-7524; TRN: US200621%%792
Journal Information:
Marine Environmental Research, 62(Supplement):S426-S432, Journal Name: Marine Environmental Research, 62(Supplement):S426-S432
Country of Publication:
United States
Language:
English