skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Can Advances in Science and Technology Prevent Global Warming? A Critical Review of Limitations and Challenges

Abstract

The most stringent emission scenarios published by the Intergovernmental Panel on Climate Change (IPCC) would result in the stabilization of atmospheric carbon dioxide (CO2) at concentrations of approximately 550 ppm which would produce a global temperature increase of at least 2 C by 2100. Given the large uncertainties regarding the potential risks associated with this degree of global warming, it would be more prudent to stabilize atmospheric CO2 concentrations at or below current levels which, in turn, would require a greater than 20-fold reduction (i.e., ?95%) in per capita carbon emissions in industrialized nations within the next 50 to 100 years. Using the Kaya equation as a conceptual framework, this paper examines whether CO2 mitigation approaches such as energy efficiency improvements, carbon sequestration, and the development of carbon-free energy sources would be sufficient to bring about the required reduction in per capita carbon emissions without creating unforeseen negative impacts elsewhere. In terms of energy efficiency, large improvements (?5-fold) are in principle possible given aggressive investments in R&D and if market imperfections such as corporate subsidies are removed. However, energy efficiency improvements per se will not result in a reduction in carbon emissions if, as predicted by the IPCC, the sizemore » of the global economy has expanded 12-26 fold by 2100. Terrestrial carbon sequestration via reforestation and improved agricultural soil management has many environmental advantages but has only limited CO2 mitigation potential because the global terrestrial carbon sink (ca. 200 Gt C) is small relative to the size of fossil fuel deposits (?4000 Gt C). By contrast, very large amounts of CO2 can potentially be removed from the atmosphere via sequestration in geologic formations and oceans, but carbon storage is not permanent and is likely to create many unpredictable environmental consequences. Renewable solar energy can in theory provide large amounts of carbon-free power. However, biomass and hydroelectric energy can only be marginally expanded and large-scale solar energy installations (i.e., wind, photovoltaics, and direct thermal) are likely to have significant negative environmental impacts. Expansion of nuclear energy is highly unlikely due to concerns over reactor safety, radioactive waste management, weapons proliferation, and cost. In view of the serious limitations and liabilities of many proposed CO2 mitigation approaches it appears that there remain only few no-regrets options such as drastic energy efficiency improvements, extensive terrestrial carbon sequestration, and cautious expansion of renewable energy generation. These promising CO2 mitigation technologies have the potential to bring about the required 20-fold reduction in per capita carbon emission only if population and economic growth are halted without delay. Thus, addressing the problem of global warming requires not only technological research and development but also a reexamination of core values that mistakenly equate material consumption and economic growth to happiness and well-being.« less

Authors:
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
889056
Report Number(s):
PNNL-SA-50511
Journal ID: ISSN 1381-2386; MASCFV; KP1202020; TRN: US0604366
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Mitigation and Adaptation Strategies for Global Change
Additional Journal Information:
Journal Volume: 11; Journal ID: ISSN 1381-2386
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; 12 MANAGEMENT OF RADIOACTIVE WASTES, AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; 14 SOLAR ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY; AMBIENT TEMPERATURE; BIOMASS; CARBON DIOXIDE; CARBON SEQUESTRATION; CARBON SINKS; DEFECTS; ECONOMIC DEVELOPMENT; ENERGY EFFICIENCY; ENERGY SOURCES; ENVIRONMENTAL IMPACTS; FINANCIAL INCENTIVES; FOSSIL FUELS; GEOLOGIC FORMATIONS; GREENHOUSE EFFECT; NUCLEAR ENERGY; RADIOACTIVE WASTE MANAGEMENT; REACTOR SAFETY; SOLAR ENERGY; carbon emission reductions, carbon sequestration, energy efficiency, kaya equation, economic growth stabilization, population growth statilization, renewable energy

Citation Formats

Huesemann, Michael H. Can Advances in Science and Technology Prevent Global Warming? A Critical Review of Limitations and Challenges. United States: N. p., 2006. Web. doi:10.1007/s11027-006-2166-0.
Huesemann, Michael H. Can Advances in Science and Technology Prevent Global Warming? A Critical Review of Limitations and Challenges. United States. https://doi.org/10.1007/s11027-006-2166-0
Huesemann, Michael H. 2006. "Can Advances in Science and Technology Prevent Global Warming? A Critical Review of Limitations and Challenges". United States. https://doi.org/10.1007/s11027-006-2166-0.
@article{osti_889056,
title = {Can Advances in Science and Technology Prevent Global Warming? A Critical Review of Limitations and Challenges},
author = {Huesemann, Michael H},
abstractNote = {The most stringent emission scenarios published by the Intergovernmental Panel on Climate Change (IPCC) would result in the stabilization of atmospheric carbon dioxide (CO2) at concentrations of approximately 550 ppm which would produce a global temperature increase of at least 2 C by 2100. Given the large uncertainties regarding the potential risks associated with this degree of global warming, it would be more prudent to stabilize atmospheric CO2 concentrations at or below current levels which, in turn, would require a greater than 20-fold reduction (i.e., ?95%) in per capita carbon emissions in industrialized nations within the next 50 to 100 years. Using the Kaya equation as a conceptual framework, this paper examines whether CO2 mitigation approaches such as energy efficiency improvements, carbon sequestration, and the development of carbon-free energy sources would be sufficient to bring about the required reduction in per capita carbon emissions without creating unforeseen negative impacts elsewhere. In terms of energy efficiency, large improvements (?5-fold) are in principle possible given aggressive investments in R&D and if market imperfections such as corporate subsidies are removed. However, energy efficiency improvements per se will not result in a reduction in carbon emissions if, as predicted by the IPCC, the size of the global economy has expanded 12-26 fold by 2100. Terrestrial carbon sequestration via reforestation and improved agricultural soil management has many environmental advantages but has only limited CO2 mitigation potential because the global terrestrial carbon sink (ca. 200 Gt C) is small relative to the size of fossil fuel deposits (?4000 Gt C). By contrast, very large amounts of CO2 can potentially be removed from the atmosphere via sequestration in geologic formations and oceans, but carbon storage is not permanent and is likely to create many unpredictable environmental consequences. Renewable solar energy can in theory provide large amounts of carbon-free power. However, biomass and hydroelectric energy can only be marginally expanded and large-scale solar energy installations (i.e., wind, photovoltaics, and direct thermal) are likely to have significant negative environmental impacts. Expansion of nuclear energy is highly unlikely due to concerns over reactor safety, radioactive waste management, weapons proliferation, and cost. In view of the serious limitations and liabilities of many proposed CO2 mitigation approaches it appears that there remain only few no-regrets options such as drastic energy efficiency improvements, extensive terrestrial carbon sequestration, and cautious expansion of renewable energy generation. These promising CO2 mitigation technologies have the potential to bring about the required 20-fold reduction in per capita carbon emission only if population and economic growth are halted without delay. Thus, addressing the problem of global warming requires not only technological research and development but also a reexamination of core values that mistakenly equate material consumption and economic growth to happiness and well-being.},
doi = {10.1007/s11027-006-2166-0},
url = {https://www.osti.gov/biblio/889056}, journal = {Mitigation and Adaptation Strategies for Global Change},
issn = {1381-2386},
number = ,
volume = 11,
place = {United States},
year = {Mon Jul 03 00:00:00 EDT 2006},
month = {Mon Jul 03 00:00:00 EDT 2006}
}