SciTech Connect

Title: Carbon Dioxide Sequestering Using Microalgal Systems

Carbon Dioxide Sequestering Using Microalgal Systems This project evaluated key design criteria, the technical feasibility, and the preliminary economic viability of a CO{sub 2}-sequestering system integrated with a coal-fired power plant based on microalgae biofixation. A review of relevant literature was conducted, and a bench-scale algal-based sequestration system was constructed and operated to verify algal growth capabilities using a simulated flue gas stream. The bench-scale system was a 20-gallon glass aquarium with a 16-gallon operating volume and was direct-sparged with a simulated flue gas. The flue gas composition was based on flue gas analyses for a 550-MW Coal Creek Power Station boiler in Underwood, North Dakota, which averaged 12.1% CO{sub 2}, 5.5% O{sub 2}, 423 ppm SO{sub 2}, 124 ppm NO{sub x}, and an estimated 50 mg/m{sup 3} fly ash loading. The algae were grown in Bold's basal growth medium. Lighting was provided using a two-tube fluorescent ''grow-light'' bulb fixture mounted directly above the tank. Algal growth appeared to be inhibited in the presence of SO{sub 2} using mixed cultures of green and blue-green cultures of algae. Samples of Monoraphidium strain MONOR02 and Nannochloropsis NANNO02 algal samples were obtained from the University of Hawaii Culture Collection. These samples did not exhibit inhibited growth in the presence more » of all the simulated flue gas constituents, but growth rates were somewhat lower than those expected, based on the review of literature. Samples of harvested algae were analyzed for protein, lipid, and carbohydrate content. A lipid content of 26% appeared to be fairly normal for algae, and it did not appear that large amounts of nitrogen were being fixed and promoting growth, nor were the algae starved for nitrogen. Proteins made up 41% of the total mass, and carbohydrates were assumed to be 33% (by difference). A preliminary economic analysis showed the costs of an integrated system based on microalgae biofixation to sequester 25% of the CO{sub 2} from a 550-MW coal-fired power plant could be recovered if the value recovered from the harvested algae was approximately $97. The analysis indicated the potential to produce 2427 tpd of algae at 12% moisture (2136 tpd dry weight). Of this, approximately 876 tpd of protein could be recovered and used as an animal feed. Similarly, an estimated 555 tpd of lipids could be recovered for use in the production of liquid fuels and chemicals. Approximately 705 tpd of carbohydrates would also be recovered. These carbohydrates may be suitable as a fermentation feedstock for the production of alcohols or organic acids. « less
Authors: ; ; ;
Publication Date:
OSTI Identifier:OSTI ID: 882000
DOE Contract Number:FC26-98FT40320
Resource Type:Technical Report
Research Org:University of North Dakota
Sponsoring Org:USDOE
Country of Publication:United States
Language:English
Subject: 59 BASIC BIOLOGICAL SCIENCES; ALGAE; ANIMAL FEEDS; CARBOHYDRATES; CARBON DIOXIDE; ECONOMIC ANALYSIS; FLUE GAS; FLY ASH; LIQUID FUELS; NITROGEN; ORGANIC ACIDS; POWER PLANTS; PROTEINS; STRAINS