skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Classification of metal-oxide bonded interactions based on local potential- and kinetic-energy densities

Journal Article · · Journal of Chemical Physics, 124(8):Art. No. 084704
DOI:https://doi.org/10.1063/1.2161425· OSTI ID:878263

A classification of the HF bonded interactions comprising a large number of molecules has been proposed by Espinosa et al. [J. Chem. Phys. 117, 5529 (2002)] based on the ratio |V(rc)|/G(rc) where |V(rc)| is the magnitude of the local potential energy density and G(rc) is the local kinetic density evaluated at the bond critical points, rc. A calculation of the ratio for the MO bonded interactions comprising a relatively large number of molecules and earth materials, together with the constraints imposed by the values of Ñ2ρ(rc) and the local electronic energy density H(rc) = G(rc) + V(rc) in the HF study, yielded the same classification for the oxides as found for the fluorides. This is true despite the different trends of the bond critical point and local energy properties with the bond length displayed by the HF and MO bonded interactions. LiO, NaO and MgO bonded interactions classify as closed shell ionic bonds, BeO, AlO, SiO, BO and PO bonded interactions classify as bonds of intermediate character and NO bonded interactions classify as shared covalent bonds. CO and SO bonded interactions classify as both intermediate and covalent bonded interactions. The CO triple bonded interaction classifies as a bond of intermediate character and the CO single bonded interaction classifies as a covalent bond whereas their H(rc) value indicates that they are both covalent bonds. The |V(rc)|/G(rc) ratios for the BeO, AlO and SiO bonded interactions indicate that they have a substantial component of ionic character despite their classification as bonds of intermediate character. The trend between |V(rc)|/G(rc) and the character of the bonded interaction is consistent with trends expected from electronegativity considerations. The connection between the net charges and the experimental SiO bond length evaluated for the Si and O atoms comprising two orthosilicates are examined in terms of the |V(rc)|/G(rc) values.

Research Organization:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC05-76RL01830
OSTI ID:
878263
Report Number(s):
PNNL-SA-46905; JCPSA6; KC0303020; TRN: US200611%%58
Journal Information:
Journal of Chemical Physics, 124(8):Art. No. 084704, Vol. 124, Issue 8; ISSN 0021-9606
Country of Publication:
United States
Language:
English