skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Meson production in photon and neutrino experiments

Thesis/Dissertation ·
OSTI ID:7243744

The reaction {gamma}p {yields} {rho}{sup 0}{sub fast}p{pi}{sup +}{pi}{sup {minus}} has been studied with the linearly polarized 20 GeV monochromatic photon beam at the SLAC Hybrid Facility, to test the prediction of s channel helicity conservation in inelastic diffraction for t{prime} < 0.4 (GeV/c){sup 2}. In a sample of 1934 events from this reaction, the {rho}{sup 0} decay angular distributions and spin density matrix elements are consistent with s channel helicity conservation. The {pi}{sup +}{pi}{sup {minus}} mass shape displays the same skewing as seen in the reaction {gamma}p {yields} p{pi}{sup +}{pi}{sup {minus}}, and the p{pi}{sup +}{pi}{sup {minus}} mass distribution compares well and scale according to the vector dominance model with that produced in {pi}{sup {plus minus}}p {yields} p{pi}{sup +}{pi}{sup {minus}}. Coherent production of the a{sub 1} meson has been observed through the reaction {nu}Fr {yields} {mu}{sup {minus}}a{sub 1}{sup +}Fr in the Tohoku 1m freon bubble chamber hybrid system. The bubble chamber was exposed to the Fermilab wideband neutrino beam, generated by 800 GeV protons at the Tevatron. The observed rate from the final charged current sample of 1792 events was 1.1 {plus minus} 0.47%, and the a{sub 1} - W coupling is calculated to be f{sup 2}{sub a}/f{sup 2}{sub {rho}} = 5.2 {plus minus} 2.2. A comparison of the cross section and the kinematical parameters with the theoretical predictions of the vector dominance model, gives reasonable agreement with the data. A Monte-Carlo study was performed to check the possibility of detecting the radiative decay of the D*{sub s} in our bubble chamber. Using the most favorable predicted rate through the {phi} branching ratio, it was determined that three times our data sample would be needed for a one {sigma} effect above background.

Research Organization:
Tennessee Univ., Knoxville, TN (USA)
OSTI ID:
7243744
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English