skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: How close to ideal is the photon gas Corrections to Planck's laws at kT. much lt. m sub e

Journal Article · · Annals of Physics (New York); (United States)
 [1]
  1. Univ. of Sussex (United Kingdom)

At temperatures well below the electron rest mass, the electron-positron concentrations in black-body radiation (BBR) are negligible, and deviations from Planck's laws are due to the photon-photon coupling described (in natural units) by the classic Euler-Heisenberg local interaction Lagrangean density ({alpha}{sup 2}/360{pi}{sup 2}m{sub e}{sup 4})((E{sup 2}{minus}B{sup 2}){sup 2}+7(E{center dot}B){sup 2}). Though unobservably small, these corrections answer the question in the title. They are best expressed in terms of the (frequency-independent) shift in the refractive index {kappa} = (1+{Delta}{kappa}) of BBR, where {Delta}{kappa} = {alpha}{sup 2}(kT/m{sub e}){sup 4}44{pi}{sup 2}/2025 {approx} 7.5 {times} 10{sup {minus}35}(T/300){sup 4}. There are fractional changes of 3 {Delta}{kappa}/2 in the free-energy density and the pressure; 7 {Delta}{kappa}/2 in the energy density; and 2 {Delta}{kappa} in the mean-square electric field in any frequency range, whence only the intensity of the Planck spectrum is shifted but not its shape. The dielectric constant {var epsilon} = (1 + {Delta}{var epsilon}) and magnetic susceptibility {mu} = (1 + {Delta}{mu}) of BBR are equal, with {Delta}{var epsilon} = {Delta}{mu} = {Delta}{kappa}, whence the author compares the BBR shifts with those in an ordinary linear nondispersive medium having {var epsilon} = {mu} = {kappa} {triple bond} {radical}{epsilon}{mu}.

OSTI ID:
7235468
Journal Information:
Annals of Physics (New York); (United States), Vol. 205:1; ISSN 0003-4916
Country of Publication:
United States
Language:
English