skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Olfactory marker protein: turnover and transport in normal and regenerating neurons

Journal Article · · J. Neurosci.; (United States)
OSTI ID:7190406

A 19,000-dalton acidic protein designated olfactory marker protein (OMP) is a cell-specific marker of mature olfactory chemosensory neurons. Intranasal irrigation of mouse olfactory epithelium with (/sup 35/S)methionine labeled OMP to high specific activity. Turnover and transport characteristics of /sup 35/S-labeled OMP were compared to those of /sup 35/S-labeled global cytosol protein in groups of young, adult, and Triton-treated adult mice. The latter contained primarily large numbers of regenerating olfactory neurons. In olfactory epithelium of young and Triton-treated mice, the specific activity of OMP was three times that of global cytosol protein, whereas in adults the two measures were equal. In all three groups, however, the rate of degradation of OMP was roughly equal to that of cytosol protein (T1/2 . 5 to 6 days). By contrast, differences in T1/2 for OMP decline in the bulb of adult, young, and Triton-treated adult mice were highly significant (T1/2's of 9.3, 6.1, and 4 to 5 days, respectively; p . 0.001). The specific activity of (35S)methionine incorporated in OMP exceeded that of the free amino acid 5-fold, indicating minimal precursor reutilization during the course of our experiments. Turnover data indicate that increased isotope incorporation into OMP in the epithelium is matched by an accelerated rate of degradation in the bulb. This may be correlated with the physiological state or developmental age of the primary neurons since in young and Triton-treated adult mice, rapidly maturing ''young'' olfactory neurons represent a larger proportion of the total population than in adults. Thus, OMP behaves as a typical, relatively slowly transported soluble protein (v . 2 to 4 mm/day, slow component b).

Research Organization:
Roche Institute of Molecular Biology, Roche Research Center, Nutley, New Jersey
OSTI ID:
7190406
Journal Information:
J. Neurosci.; (United States), Vol. 4:3
Country of Publication:
United States
Language:
English