skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fulvalene- and polyarene-transition metal-carborane complexes as building blocks for multilevel arrays. Stepwise synthesis and structural characterization of polymetallic linked sandwiches

Journal Article · · Journal of the American Chemical Society; (USA)
DOI:https://doi.org/10.1021/ja00195a035· OSTI ID:7158919
; ;  [1]
  1. Univ. of Virginia, Charlottesville (USA)

The designed synthesis and structural elucidation of a series of linked double-decker and triple-decker arene-metal carborane complexes, in which the sandwich moieties are linked either directly or via bridging phenylene or biphenylene groups, are reported. The reaction of fulvalenide dianion ((C{sub 5}H{sub 4}){sub 2}{sup 2{minus}}) with CoCl{sub 2} and the Et{sub 2}C{sub 2}B{sub 4}H{sub 5}{sup {minus}} ion generated ((Et{sub 2}C{sub 2}B{sub 4}H{sub 4})Co(C{sub 5}H{sub 4})){sub 2} (1), the first known fulvalene-metal-carborane sandwich species, as air-stable orange crystals. Double-decapitation (removal of the apex BH units) of 1 gave yellow air-stable ((Et{sub 2}C{sub 2}B{sub 3}H{sub 5})Co(C{sub 5}H{sub 4})){sub 2} (3). The interaction of the 1,4-bis(tetramethylcyclopentadienyl)phenylene dianion (Me{sub 4}C{sub 5}-C{sub 6}H{sub 4}-C{sub 5}Me{sub 4}){sup 2{minus}} with CoCl{sub 2} and the carborane ion produced orange ((Et{sub 2}C{sub 2}B{sub 4}H{sub 4})Co(C{sub 5}Me{sub 4})){sub 2}C{sub 6}H{sub 4} (4), which on double-decapitation gave yellow ((Et{sub 2}C{sub 2}B{sub 3}H{sub 5})Co(C{sub 5}Me{sub 4})){sub 2}C{sub 6}H{sub 4} (6), both compounds isolated as air-stable crystals. Similar treatment of the (Me{sub 4}C{sub 5}-(C{sub 6}H{sub 4}){sub 2}-C{sub 5}Me{sub 4}){sup 2{minus}} dianion gave orange crystals of ((Et{sub 2}C{sub 2}B{sub 4}H{sub 4})Co(C{sub 5}Me{sub 4})){sub 2} (7), which was decapitated to generate yellow ((Et{sub 2}C{sub 2}B{sub 3}H{sub 5})Co(C{sub 5}Me{sub 4})){sub 2}(C{sub 6}H{sub 4}){sub 2} (9); again both species are air-stable.

OSTI ID:
7158919
Journal Information:
Journal of the American Chemical Society; (USA), Vol. 111:13; ISSN 0002-7863
Country of Publication:
United States
Language:
English