skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Complete structure of the polysaccharide from Streptococcus sanguis J22

Journal Article · · Biochemistry; (USA)
DOI:https://doi.org/10.1021/bi00453a032· OSTI ID:7009273
;  [1];  [2]
  1. Illinois Institute of Technology, Chicago (USA)
  2. National Institute of Dental Research, Bethesda, MD (USA)

The cell wall polysaccharides of certain oral streptococci such as Streptococcus sanguis strains 34 and J22, although immunologically distinct, act as receptors for the fimbrial lectins of Actinomyces viscosus T14V. The authors report the complete covalent structure of the polysaccharide from S. sanguis J22 which is composed of a heptasaccharide subunit linked by phosphodiester bonds. The repeating subunit, which contains {alpha}-GalNAc, {alpha}-rhamnose, {beta}-rhamnose, {beta}-glucose, and {beta}-galactose all in the pyranoside form and {beta}-galactofuranose, is compared with the previously published structure of the polysaccharide from strain 34. The structure has been determined almost exclusively by high-resolution nuclear magnetic resonance methods. The {sup 1}H and {sup 13}C NMR spectra of the polysaccharides from both strains 34 and J22 have been completely assigned. The stereochemistry of pyranosides was assigned from J{sub H-H} values determined from phase-sensitive COSY spectra, and acetamido sugars were assigned by correlation of the resonances of the amide {sup 1}H with the sugar ring protons. The {sup 13}C spectra were assigned by {sup 1}H-detected multiple-quantum correlation (HMQC) spectra, and the assignments were confirmed by {sup 1}H-detected multiple-bond correlation (HMBC) spectra. The positions of the glycosidic linkages were assigned by detection of three-bond {sup 1}H-{sup 13}C correlation across the glycosidic linkage in the HMBC spectra. The positions of the phosphodiester linkages were determined by splittings observed in the {sup 13}C resonances due to {sup 31}P coupling and also by {sup 1}H-detected {sup 31}P correlation spectroscopy.

OSTI ID:
7009273
Journal Information:
Biochemistry; (USA), Vol. 29:1; ISSN 0006-2960
Country of Publication:
United States
Language:
English