skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photodissociation spectroscopy of the carbonyl sulfide ion with momentum analysis of the sulfur product ion

Miscellaneous ·
OSTI ID:6915077

A Nuclide 12-90-G mass spectrometer was modified for use as a photofragment momentum spectrometer. The resultant apparatus was capable of obtaining both absolute cross sections for photodissociation with respect to wavelength and relative cross sections for photodissociation with respect to kinetic energy release. The kinetic energy release for the photodissociation reaction of the nitrous oxide cation (leading to the production of the nitric oxide cation and the nitrogen atom), was studied at 3080.4 [angstrom], 3371.3 [angstrom], and 3381.4 [angstrom]. When a nitrogen atom was produced in the [sup 4]S state, the nitric oxide cation was found to be formed predominantly with 5 to 7 quanta of vibrational energy. Nitrogen atoms were formed preferentially in the [sup 2]D state when it was energetically feasible at 3371.3 [angstrom] and 3080.4 [angstrom]. The kinetic energy release for the photodissociation reaction of the carbonyl sulfide cation (leading to the production of carbon monoxide and a sulfur cation), was studied at 2822.2 [angstrom], 2921.8 [angstrom], 2991.0 [angstrom], 2991.9 [angstrom], 3080.4 [angstrom], 3104.3 [angstrom], 3127.9 [angstrom], 3184.9 [angstrom], 3351.8 [angstrom], 3371.3 [angstrom], and 3393.0 [angstrom]. When sulfur cations were produced in the [sup 4]S state, the carbon monoxide products were formed predominantly with 5 to 7 quanta of vibrational energy. Sulfur cations were formed preferentially in the [sup 2]D state from hot bands at 3351.8 [angstrom], 3080.4 [angstrom], and 2991.9 [angstrom]. Sulfur cations were also produced in the [sup 2]D state at 2921.8 [angstrom] and 2822.2 [angstrom], where it was energetically feasible from the ground state of carbonyl sulfide cations.

Research Organization:
Missouri Univ., Kansas City, MO (United States)
OSTI ID:
6915077
Resource Relation:
Other Information: Thesis (Ph.D.)
Country of Publication:
United States
Language:
English