skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pressure and fluid-flow response to production from reservoirs bounded by faults with relay structures

Conference · · AAPG Bulletin
OSTI ID:6861858

Compartmentatilization of hydrocarbon reservoirs by faults is a widely observed phenomenon in the North Sea and the Niger delta oil fields among others. Faults with significant throw or heave are identifiable in seismic surveys. However, toward their terminations or near relay structures, slip decreases so portions of the faults may be invisible in seismic data. Therefore, we use outcrop analogs to constrain the model geometry and permeability distributions to investigate the influence on fluid flow during production of such relay structures and the apparent terminations of faults in seismic images. We employ field measurements of the geometry, width and permeability of fault terminations and relay structures in the Entrada Sandstone, Arches National Park, Utah, to construct fluid flow models of a fault-bounded analog reservoir. Production from wells drilled into this reservoir is simulated with a novel high-resolution finite element code. Starting with initially uniform reservoir pressure, the results of these simulations based on geologically realistic parameters, comprise pressure differentials that build up during production across seismically detectable faults with associated deformation bands and joints in the relay structure. For a typical relay structure, we explore the implications of these results for fault-seal stability and for changes in reservoir flow patterns if fault permeability changes during production.

OSTI ID:
6861858
Report Number(s):
CONF-960527-; CODEN: AABUD2
Journal Information:
AAPG Bulletin, Vol. 5; Conference: Annual convention of the American Association of Petroleum Geologists, Inc. and the Society for Sedimentary Geology: global exploration and geotechnology, San Diego, CA (United States), 19-22 May 1996; ISSN 0149-1423
Country of Publication:
United States
Language:
English