skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Materials problems in fluidized bed combustion systems. Appendix 4: evaluation of boiler alloy specimens at General Electric Company. Final report

Technical Report ·
DOI:https://doi.org/10.2172/6798291· OSTI ID:6798291

The results of post-test evaluations of certain boiler alloy specimens from corrosion tests conducted in the fluidized-bed combustion system at the Coal Research Establishment, Stoke Orchard, England are presented. Two tests, each of 1000 hours duration were conducted. Alloys included were Inconel 601, Inconel 617, Inconel 671, Hastelloy X, Haynes Alloy 188, and GE-2541 alloy. Specimen temperatures ranged from 649/sup 0/C (1200/sup 0/F) to 899/sup 0/C (1650/sup 0/F). Calcium sulfate deposits occurred on all specimens, regardless of whether they were situated in the combustion bed or in the free-board above it. In general, corrosion attack as measured by the thickness of affected metal below the deposit/scale, was greater in specimens located in the bed than in similar specimens tested at the same temperature above the bed. A dramatic example of this is the 160 to 225 microns average attack in specimens of Inconel 671 tested at 899/sup 0/C (1650/sup 0/F) in the bed compared to 18 microns in a specimen tested at the same temperature above the bed. In most instances the differences were much smaller, and in a few cases no difference was apparent. Inconel 601 showed greater attack at 760/sup 0/C (1400/sup 0/F) in the bed than at 843/sup 0/C (1550/sup 0/F). To a lesser extent, Inconel 617 specimens showed the same general trend. Hastelloy X and Haynes Alloy 188 specimens exhibited moderate attack (10 to 50 microns) at the temperatures at which they were tested. Specimens of the iron-chrome-aluminum-yttrium alloy, GE-2541, showed the least attack at 899/sup 0/C (1650/sup 0/F) of these alloys, both for specimens tested in and above the combustion bed. Inconel 671 specimens which were situated in the combustion bed showed very severe localized attack (pits) while many other areas of the same specimens exhibited no greater attack than specimens of other alloys.

Research Organization:
General Electric Co., Cincinnati, OH (USA). Advanced Energy Programs
OSTI ID:
6798291
Report Number(s):
EPRI-CS-1449(App.4)
Country of Publication:
United States
Language:
English