skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California

Journal Article · · Journal of Geophysical Research
DOI:https://doi.org/10.1029/98JB01389· OSTI ID:678752

Carbon dioxide and helium with isotopic compositions indicative of a magmatic source ({delta}thinsp{sup 13}C={minus}4.5 to {minus}5{per_thousand}, {sup 3}He/{sup 4}He=4.5 to 6.7 R{sub A}) are discharging at anomalous rates from Mammoth Mountain, on the southwestern rim of the Long Valley caldera in eastern California. The gas is released mainly as diffuse emissions from normal-temperature soils, but some gas issues from steam vents or leaves the mountain dissolved in cold groundwater. The rate of gas discharge increased significantly in 1989 following a 6-month period of persistent earthquake swarms and associated strain and ground deformation that has been attributed to dike emplacement beneath the mountain. An increase in the magmatic component of helium discharging in a steam vent on the north side of Mammoth Mountain, which also began in 1989, has persisted until the present time. Anomalous CO{sub 2} discharge from soils first occurred during the winter of 1990 and was followed by observations of several areas of tree kill and/or heavier than normal needlecast the following summer. Subsequent measurements have confirmed that the tree kills arc associated with CO{sub 2} concentrations of 30{endash}90{percent} in soil gas and gas flow rates of up to 31,000 gthinspm{sup {minus}2}thinspd{sup {minus}1} at the soil surface. Each of the tree-kill areas and one area of CO{sub 2} discharge above tree line occurs in close proximity to one or more normal faults, which may provide conduits for gas flow from depth. We estimate that the total diffuse CO{sub 2} flux from the mountain is approximately 520 t/d, and that 30{endash}50 t/d of CO{sub 2} are dissolved in cold groundwater flowing off the flanks of the mountain. Isotopic and chemical analyses of soil and fumarolic gas demonstrate a remarkable homogeneity in composition, suggesting that the CO{sub 2} and associated helium and excess nitrogen may be derived from a common gas reservoir whose source is associated with some combination of magmatic degassing and thermal metamorphism of metasedimentary rocks. Furthermore, N{sub 2}/Ar ratios and nitrogen isotopic values indicate that the Mammoth Mountain gases are derived from sources separate from those that supply gas to the hydrothermal system within the Long Valley caldera. Various data suggest that the Mammoth Mountain gas reservoir is a large, low-temperature cap over an isolated hydrothermal system, that it predates the 1989 intrusion, and that it could remain a source of gas discharge for some time. {copyright} 1998 American Geophysical Union

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
DOE Contract Number:
AC03-76SF00098
OSTI ID:
678752
Journal Information:
Journal of Geophysical Research, Vol. 103, Issue B7; Other Information: PBD: Jul 1998
Country of Publication:
United States
Language:
English