skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ideal-gas heat capacities and virial coefficients of HFC refrigerants

Journal Article · · International Journal of Thermophysics

Thermodynamic properties of HFC (hydrofluorocarbon) compounds have been extensively studied with worldwide interest as alternative refrigerants. Both quality and quantity in the experimental data far exceed those for the CFC and HCFC refrigerants. These data now provide a great opportunity to examine the validity of theoretical models, and vice versa. Among them, the ideal-gas heat capacity (C{sub p}{sup 0}) and virial coefficients derived from the experimental data are of particular interest, since they are directly related to the intramolecular and intermolecular potentials through the statistical mechanical procedure. There have been some discrepancies reported in the observed and theoretical C{sub p}{sup 0} for HFC compounds. The authors have performed new calculations for C{sub p}{sup 0} for several HFCs. The present results are consistent with the selected experimental values. The second (B) and Third (C) virial coefficients have been reported for these HFC refrigerants from speed of sound data and Burnett PVT data. Often, a square well-type intermolecular potential is employed to correlate the data. However, the model potential cannot account consistently for both B and C coefficients with the same potential parameters. They have analyzed the data with the Stockmayer potential and obtained self-consistent results for various HFC (R-23, R-32, R-125, R-134a, R-143a, and R-152a) compounds with physically reasonable potential parameters.

OSTI ID:
675522
Journal Information:
International Journal of Thermophysics, Vol. 19, Issue 1; Other Information: PBD: Jan 1998
Country of Publication:
United States
Language:
English