skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pressure wave attenuation and dispersion in two-phase flow

Conference ·
OSTI ID:6688073

The pressure shock wave propagation behavior in three vapor-liquid systems, steam-water, ethanol-ethanol, and Freon-Freon, has been investigated over a void fraction, ..cap alpha.., range from zero to 30%. Attenuation and dispersion behavior seems relatively insensitive (no order-of-magnitude deviations) to differences in system physical properties. The attenuation coefficient of water, BETA/sub H/2/sub O/ ranged from 0.021 cm/sup -1/ at 5% void to 0.072 cm/sup -1/ at 30% void fraction. BETA/sub F113/ was as much as 40% lower than BETA/sub ETOH/ or BETA/sub H/2/sub O/ for void fractions less than 20% where the initial wave amplitude, ..delta..P/sub o/ was 2.90 bar. Larger amplitude waves (4.14 bar) demonstrated a greater rate of attenuation throughout the void fraction range, more pronounced in the lower regions: 80% greater for 5% steam-water and 120% greater for 5% Freon-113. The attenuation data from the present investigation tend to lie between one- and two-component acoustic attenuation theories and data. However, near the resonant bubble frequency, the two component results approach the one-component region. As the void fraction is decreased, the one- and two-component acoustic theories and data (small and finite amplitude, including the present experimentation) smoothly converge.

OSTI ID:
6688073
Report Number(s):
CONF-871113-; TRN: 88-037439
Resource Relation:
Conference: American Institute of Chemical Engineers annual meeting, New York, NY, USA, 15 Nov 1987; Other Information: Technical Paper 125G
Country of Publication:
United States
Language:
English