skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Elastic properties of metals and minerals under shock compression

Miscellaneous ·
OSTI ID:6658012

Comparison of laboratory elasticity data with seismic measurements of the Earth provides a means to understand the deep interior. In this work, elastic wave velocities have been measured under shock compression to 80 GPa in an Fe-Cr-Ni alloy, to 27 GPa in polycrystalline MgO, and to 81 GPa in molybdenum preheated to 1400[degrees]C. These measurements were made by recording particle velocity histories at a sample surface using the method of velocity interferometry. Compressional and bulk wave velocities in Fe-Cr-Ni alloy are consistent with third-order finite strain theory and ultrasonic data. The measured wave profiles can be successfully reproduced by numerical simulations utilizing elastic-plastic theory modified by a Bauschinger effect and stress relaxation. Material strength was found to increase by a factor of at least 5 up to 80 GPa and to be 2-3% of the total stress. Compressional and bulk velocities in Fe-Cr-Ni define linear velocity-density trends and can be modeled by averaging properties of Fe, Cr, and Ni. The effect of alloying [approximately]4 wt.% Ni with Fe would change both V[sub P] and V[sub B] by less than 1% under Earth's core conditions. Compressional and shear velocities in Fe-Ni are compatible with inner core values when corrected for thermal effects. Wave profile and EOS measurements in polycrystalline MgO define its EOS: U[sub S] = 6.77(0.08) + 1.27(0.04)[mu][sub p]. Compressional sound velocities to 27 GPa yield a longitudinal modulus and its pressure derivative which are in good agreement with ultrasonic determinations. The unloading wave profiles can be modeled using a modified elastic-plastic constitutive response originally developed for metals. Thermal expansivities in MgO have been determined to be 12 [+-] 14 [times] 10[sup [minus]6] K[sup [minus]1] at P = 174-200 GPa and T = 3100-3600 K from shock temperature and EOS data. These results imply that the Earth's lower mantle is enriched in Si and/or Fe relative to the upper mantle.

Research Organization:
California Inst. of Tech., Pasadena, CA (United States)
OSTI ID:
6658012
Resource Relation:
Other Information: Thesis (Ph.D.)
Country of Publication:
United States
Language:
English