skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fate of viruses in artificial wetlands

Journal Article · · Appl. Environ. Microbiol.; (United States)
OSTI ID:6621445

Little is known about the ability of wetlands to remove disease-causing viruses from municipal wastewater. In this study the authors examined the survival of several indicators of viral pollution applied in primary municipal wastewater to artificial wetland ecosystems. Only about 1% of the indigenous F-specific RNA bacteriophages survived flow through the vegetated wetland beds at a 5-cm-day/sup -1/ hydraulic application rate during the period from June through December 1985. The total number of indigenous F-specific bacteriophages was also reduced by about 99% by wetland treatment, with the mean inflow concentration over the period of an entire year reduced from 3129 to 33 PFU ml/sup -1/ in the outflow of an vegetated bed and to 174 PFU ml/sup -1/ in the outflow of an unvegetated bed. Such superior treatment by the vegetated bed demonstrates the significant role of higher aquatic plants in the removal process. Seeded MS2 bacteriophage and seeded poliovirus were removed more efficiently than were the indigenous bacteriophages, with less than 0.2% and MS2 and 0.1% of the poliovirus surviving flow at the same hydraulic application rate. The decay rate (k) of MS2 in a stagnant wetlands was lower than that for flowing systems, reflecting the enhanced capacity for filtration or adsorption of viruses by the root-substrate complex. Artificial wetlands may offer an attractive alternative to conventional land treatment systems for reducing the load disease-causing viruses to the aquatic environment.

Research Organization:
San Diego Region Water Reclamation Agency, Santee, CA
OSTI ID:
6621445
Journal Information:
Appl. Environ. Microbiol.; (United States), Vol. 53:4
Country of Publication:
United States
Language:
English