skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Comparison of Cenozoic atmospheric general circulation model simulations

Conference · · Geol. Soc. Am., Abstr. Programs; (United States)
OSTI ID:6577436

Paleocene, Eocene, Miocene and present day (with polar ice) geography are specified as the lower boundary condition in a mean annual, energy balance ocean version of the Community Climate Model (CCM), a spectral General Circulation Model of the Atmosphere developed at the National Center for Atmospheric Research. This version of the CCM has a 4.5/sup 0/ latitudinal and 7.5/sup 0/ longitudinal resolution with 9 vertical levels and includes predictions for pressure, winds, temperature, evaporation, precipitation, cloud cover, snow cover and sea ice. The model simulations indicate little geographically-induced climates changes from the Paleocene to the Miocene, but substantial differences between the Miocene and the present simulations. The simulated climate differences between the Miocene and present day include: 1) cooler present temperatures (2/sup 0/C in tropics, 15-35 C in polar latitudes) with the exception of warmer subtropical desert conditions, 2) a generally weaker present hydrologic cycle, with greater subtropical aridity, 3) strengthened present day westerly jets with a slight poleward displacement, and 4) the largest regional climate changes associated with Antarctica. The results of the climate model sensitivity experiments have considerable implications for understanding how geography influences climate.

Research Organization:
National Center for Atmospheric Research, Boulder, CO (USA)
OSTI ID:
6577436
Report Number(s):
CONF-8510489-
Journal Information:
Geol. Soc. Am., Abstr. Programs; (United States), Vol. 17; Conference: 98. annual meeting of the Geological Society of America, Orlando, FL, USA, 28 Oct 1985
Country of Publication:
United States
Language:
English