skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Studies of toxic aerosols via elastic and inelastic light scattering

Journal Article · · Aerosol Science and Technology; (United States)
; ; ; ;  [1]
  1. Univ. of Washington, Seattle (United States)

Evaporation rates and chemical characteristics of potentially toxic aerosols have been determined by elastic and inelastic light-scattering measurements. The aerosol systems examined were a commercial catalyst consisting of a mixture of stannous octanoate (SNO) and 2-ethylhexanoic acid (EHA) and droplets emitted from open tanks of chromic acid solutions used for anodizing aluminum. The heavy metals contained in these aerosols represent a danger to the workplace if such materials are inhaled. Nanogram amounts of the solutions were studied by suspending single microdroplets in electrodynamic balances in a flow of air to measure evaporation rates and to obtain Raman spectra. Elastic scattering data include phase functions and morphological resonance spectra from which droplet sizes are determined. The inelastic light-scattering data or Raman spectra provide molecular vibrational bond information. It was found that EHA spectra agree with bulk data in the literature, and that SNO Raman spectra, which are not available in the literature, are consistent with infrared spectra for bulk SNO. At room temperature the vapor pressure of SNO is on the order of 0.01 Pa while that of EHA is on the order of 0.1 Pa. Raman data for the residue of evaporated chromic acid solutions show the presence of chromium oxides (Cr[sup 6+] compounds), surfactants, and bound (nonvolatile) water. 31 refs., 14 figs.

OSTI ID:
6574688
Journal Information:
Aerosol Science and Technology; (United States), Vol. 18:2; ISSN 0278-6826
Country of Publication:
United States
Language:
English