skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Two structurally distinct calcium storage sites in rat cardiac sarcoplasmic reticulum: an electron microprobe analysis study

Journal Article · · Circ. Res.; (United States)

The elemental composition of subcellular organelles in resting rat papillary muscle was measured by electron probe x-ray microanalysis of cryosections of flash-frozen tissue. Nonmitochondrial electron-dense structures (50-100 nm in diameter) with a phosphorous concentration larger than 375 mmol/kg dry wt were identified in the interfibrillar spaces of the I band region. They were not visible in the proximity of transverse tubules. The sodium, magnesium, phosphorus, sulfur, chlorine, and potassium content of the electron dense structures showed a normal distribution, consistent with a uniform composition of a specific subcellular organelle. However, the distribution of the calcium concentrations in these electron-dense structures was bimodal, suggesting that they are composed of at least two subpopulations. One subpopulation had relatively high calcium (up to 53 mmol/kg dry wt) content with a mean value of 12.5 +/- 1.1 mmol/kg dry wt, while the other one had a relatively low calcium content with a mean value of 2.8 +/- 0.3 mmol/kg dry wt. The mean calcium concentration in the junctional sarcoplasmic reticulum (j-SR) in rat papillary muscle with calcium concentrations larger than 6 mmol/kg dry wt was 14.6 +/- 2.0 mmol/kg dry wt. We propose that the electron-dense structures described above correspond to nonjunctional sarcoplasmic reticulum and that the population containing relatively high calcium concentrations is calsequestrin-containing corbular sarcoplasmic reticulum (c-SR) confined to the I band region, while the population containing relatively low calcium concentrations corresponds to anastomosing regions of the network sarcoplasmic reticulum that lack calsequestrin.

Research Organization:
Univ. of Toronto (Canada)
OSTI ID:
6517731
Journal Information:
Circ. Res.; (United States), Vol. 63:6
Country of Publication:
United States
Language:
English