skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Detecting gluinos at hadron supercolliders

Journal Article · · Phys. Rev. D; (United States)

If the gluino mass exceeds 150--200 GeV, searches for gluinos will likely have to be made at multi-TeV hadron colliders. Unlike the case of light gluinos (m approx. <60 GeV), which dominantly decay via g-tilde..-->..qq-bargamma-tilde, heavy-gluino decays proceed via g-tilde..-->..qq-barW-tilde/sub i/ and g-tilde..-->..qq-barZ-tilde/sub j/ where W-tilde/sub i/ and Z-tilde/sub j/ are charged and neutral mass eigenstates in the gauge-Higgs-fermion sector. The usual missing-p/sub T/ signatures are altered and new strategies may be required for gluino detection. We analyze heavy-gluino and scalar-quark decays and estimate the production rates for W-tilde/sub i/W-tilde/sub j/, W-tilde/sub i/Z-tilde/sub j/, and Z-tilde/sub i/Z-tilde/sub j/ pairs at a 40-TeV pp collider. Since a heavy gluino decays dominantly into jets and the heavy chargino, which in turn decays into a Z/sup 0/ or W boson plus a lighter chargino or neutralino, a typical gluino-pair event contains several leptons and/or jets in the final state.

Research Organization:
High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois 60439
OSTI ID:
6493802
Journal Information:
Phys. Rev. D; (United States), Vol. 36:1
Country of Publication:
United States
Language:
English