skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonmigrating diurnal tides in the equatorial middle atmosphere

Miscellaneous ·
OSTI ID:6453396

Data from the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) are used to analyze the diurnal tides in the middle atmosphere. A novel aspect of this study is the emphasis on the relative importance of the nonmigrating components. These modes display a high degree of temporal variability during the LIMS observing period, and contribute substantially to the diurnal signal in wind and temperature. Their observed vertical phase variations are variable; however there is evidence for upward energy propagation. It has long been hypothesized that nonmigrating tides are driven by the diurnally-varying zonally asymmetric tropospheric heating constituents. This premise is examined by employing a linear tidal model to simulate the response of the atmosphere to realistic tidal drives. These quantities are calculated from the NCAR Community Climate Model. The large-scale CCM2 diurnal surface pressure, OLR and hydrology are well simulated under July and January conditions. The CCM2 diurnal fields of short-wave radiative, convective and diffusive PBL heating are used as input to a linear tidal model with Newtonian cooling. This model successfully reproduces many observed features of the migrating and nonmigrating diurnal surface pressure tides at low latitudes. In the middle atmosphere, tropospheric solar heating is the dominant source of the migrating tide. The zonal means and eastward migrating wavenumber one components are also associated with radiative heating. The eastward migrating wavenumber three pattern is strongly linked to the dry and moist convective heating as well. The observed eastward migrating tides are harder to simulate, due in part to the failure of the linear model to incorporate the dissipative effects to which they are prone.

Research Organization:
Washington Univ., Seattle, WA (United States)
OSTI ID:
6453396
Resource Relation:
Other Information: Ph.D. Thesis
Country of Publication:
United States
Language:
English