skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Kinetics of nitrogen and sulfur reactions in combustion systems: Quarterly technical progress report No. 9

Technical Report ·
OSTI ID:6247083

The main thrust of the work was the continuation of the modeling studies of NO destruction by soot particulates. The computation took into account the decrease of soot concentration via oxidation. Since the mechanism of soot oxidation is governed mainly by the reaction between OH radicals and soot particulates, we have incorporated a limited set of detailed kinetics for the downflow coal flame. The kinetics included one hundred and nineteen reactions with twenty-seven species. The details of the modeling and the results are described. EER currently has four models of the SO/sub 2/-CaO high-temperature reaction: (1) the grain model of Silcox et al. (1985); (2) a pore model similar to that of Bhatia and Perlmutter (1980, 1981); (3) the distributed pore model of Newton and Pershing (1987); and (4) a distributed pore model similar to that of Christman and Edgar (1983). Recent work has focused on the latter two models, which are similar in many respects. They both consider a distribution of pore sizes obtained from porosimetry measurements, internal pore diffusion, filling of the pore structure with product (CaSO/sub 4/) as the reaction occurs, external diffusion to the particle surface, and sintering of the pore structure. The primary difference is that the model of Christman and Edgar (1983) considers the pores to be interconnected, while the model of Newton and Pershing (1987) assumes non-connected pores. Both models yield the same predictions of sorbent utilization when a mono-sized pore is considered (using the same physical constants). Pore mouth closure is predicted to control the extent of the SO/sub 2/-CaO reaction. When a distribution of pores is considered, the interconnected model yields higher predictions than the non-interconnected model.

Research Organization:
Energy and Environmental Research Corp., Irvine, CA (USA)
DOE Contract Number:
AC22-84PC70771
OSTI ID:
6247083
Report Number(s):
DOE/PC/70771-T7; ON: DE87014472
Resource Relation:
Other Information: Portions of this document are illegible in microfiche products
Country of Publication:
United States
Language:
English