skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Uranium in coal

Technical Report ·
DOI:https://doi.org/10.2172/6244681· OSTI ID:6244681

United States production of coal in 1977 was 695 million short tons of which 477 million tons were burned in power plants. The ash from these power plants was about 67 million tons containing an estimated 900 tons U/sub 3/O/sub 8/, assuming 14 percent ash from the type of coal used by utilities and 12 ppM U contained in ash. Perhaps 1 to 3 percent of the domestic uranium requirement could be met from coal ash, provided processing technology could be developed for uranium recovery at acceptable costs. However, the environmental problems for disposal of the slimy leached ash would be enormous. The average uranium grade of coal in the United States is less than half of that of the Earth's crust. Burning the coal concentrates the contained uranium in the ash from 2 to 20 times. However, even at 20 times concentration, the percent uranium in coal ash is less than 1/100 of the grade of the uranium ore being processed today from conventional deposits. Although it is conceivable that some coal ash might contain enough uranium to make the ash an economic source of uranium, this is not now the case for ash from any major coal-fired power plant in the United States. During 1963 to 67, about 180,000 tons of uranium-bearing carbonaceous rock from the southwestern part of the Williston Basin were mined and processed to recover about 1 million pounds of U/sub 3/O/sub 8/. None of this material has been mined since 1967. The uranium reserves of the area are small, and the environmental problems with calcining the lignitic material may be prohibitive. Some other uraniferous coal and lignite could be mined and processed as a uranium ore, but less than half of one percent of the domestic $30 reserves are in coal. A few samples of mid-continent coal have been reported to contain about 100 ppM U but little is known about the size of such deposits or the likelihood that they will be mined and used for power plant fuel to produce a high-uranium ash.

Research Organization:
Department of Energy, Grand Junction, CO (USA). Grand Junction Office
DOE Contract Number:
EY-76-C-13-1664
OSTI ID:
6244681
Report Number(s):
GJBX-56(79); TRN: 79-016820
Country of Publication:
United States
Language:
English