skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mercury from volcanic and geothermal sources

Conference · · Geol. Soc. Am., Abstr. Programs; (United States)
OSTI ID:6169511

The natural global flux of mercury from continents to the atmosphere is poorly known. Important sources are areas with a convective heat flow regime and soil degassing. The authors measured Hg/SO/sub 2/ weight ratios in volcanic vapors and applied published estimates of the volcanic sulfur flux to calculate a volcanic Hg flux. Mt. Etna. Mt. Shast, Mt. Hood, Mt. St. Helens and Volcan Colima were sampled during periods of passive degassing. They show Hg/SO/sub 2/ ratios within one order of magnitude with an average of 3.7x10/sup -6/, leading to a Hg flux of 30 Mg/Yr. Hg/SO/sub 2/ ratios from active volcanoes are larger but also more variable. An average ratio of 10/sup -4/, based on published Hg/SO/sub 2/ ratios in volcanic plumes and compatible with Hg/S ratios in non-degassed igneous rocks, lead to a maximum flux estimate of 800 Mg/yr. The geothermal Hg flux is calculated at 60 Mg/yr by combining the enthalpy and average volatile Hg content of geothermal water at 100/sup 0/C with a heat flow estimate from all continental hydrothermal sources. The total estimated volcanic and geothermal Hg flux (890 Mg/yr) is small compared to the anthropogenic Hg flux, which is estimated between 3000 and 11,500 Mg/yr.

Research Organization:
Wesleyan Univ., Middletown, CT (USA)
OSTI ID:
6169511
Report Number(s):
CONF-8510489-
Journal Information:
Geol. Soc. Am., Abstr. Programs; (United States), Vol. 17; Conference: 98. annual meeting of the Geological Society of America, Orlando, FL, USA, 28 Oct 1985
Country of Publication:
United States
Language:
English