skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optical model for low-energy neutrons on /sup 60/Ni

Journal Article · · Phys. Rev. C; (United States)

A previously published s-wave scattering function for 1--450 keV neutrons on /sup 60/Ni is averaged for comparison to the scattering from an optical model potential. The scattering length R' is found to be 5.5 +- 0.03 fm at 225 keV. Averaging of the scattering function (both by integration with a normalized weight function and by use of an analytical approximation) produces shape elastic and compound nucleus cross sections which are then fitted by adjustment of the real and imaginary well depths in both spherical and vibrational optical models with a Woods-Saxon real well (r/sub 0/ = 1.21 fm, a/sub 0/ = 0.66 fm) and a surface derivative imaginary well (r/sub D/ = 1.21 fm, a/sub D/ = 0.48 fm). The fitted depths are V/sub 0/ = 48 MeV and W/sub D/ = 29 MeV for the spherical potentials, and V/sub 0/ = 50 MeV and W/sub D/ = 24 MeV for the vibrational potentials. Uncertainties are +- 5 MeV. From an upper limit on the p-wave strength function the W/sub D/ for p waves is found to be 1.5 MeV for the vibrational model. Thus, the imaginary potential is l dependent for the assumed geometry. For s waves the vibrational model gives a good fit also with W/sub D/ = 1.5 MeV and V/sub 0/ = 54.4 MeV; however, with that V/sub 0/ the 2p states are bound too deeply in /sup 61/Ni and the 3s size resonance is predicted at too low a mass.

Research Organization:
Denison University, Granville, Ohio 43023
OSTI ID:
6159540
Journal Information:
Phys. Rev. C; (United States), Vol. 31:2
Country of Publication:
United States
Language:
English