skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Plasma heating rate in very intense laser light

Thesis/Dissertation ·
OSTI ID:6127268

An exact Volkov state solution of the minimally coupled dirac equation is used to calculate the transition rate dR of an electron scattering via a stationary ion in the presence of a very intense laser field. A consistent picture of the scattering is presented in which the electrons' initial and final states are quasi-free states. Accordingly, a modified transition rate dR and a modified Maxwell-Boltzmann distribution are developed. They are used to calculate the heating rate W of a quasi-free plasma in the presence of very intense laser light. In order to simplify the expression for the heating rate W, an important transformation, which changes an infinite sum over Bessel functions into a finite integral, is introdced. It is then shown that the leading term of the heating rate W is similar to the expression of Osborn (with corrections) for intensity I < 10/sup 16/ Watts/cm/sup 2/ Watts/cm/sup 2/ and k/sub B/T < Ike V. A new correction factor is defined to show the effect of very intense laser field when the intensity I > 10/sup 16/ Watts/cm/sup 2/. For k/sub B/T > Ike V, a spin-dependent term of order k/sub B/T/mc/sup 2/ is also discovered. This represents a new term not previously known. It is shown that the effect of this term on the heating rate is substantial and that it is possible to measure its effect with present-day laser systems.

Research Organization:
Pennsylvania State Univ., University Park (USA)
OSTI ID:
6127268
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English