skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-frequency combustion instability mechanisms in a side-dump combustor

Journal Article · · Combustion and Flame; (United States)
; ; ;  [1]
  1. Ecole Centrale Paris, Malabry (France). E.M2.C Lab.

This article describes a study of a two-dimensional two-inlet side-dump combustor fed with a mixture of air and propane. The present results concern symmetric operating conditions with respect to the two inlets. Stable and unstable regimes which depend on the inlet velocity and the equivalence ratio have been identified. Schlieren visualization, radical imaging with an intensified CCD camera, and simultaneous pressure, inlet velocity and C[sub 2] emission light measurements, have been used to characterize the combustor behavior. Imaging of the flowfield has provided an insight on the flame structure and its interaction with the entering jets. Two low-frequency unstable modes (a fuel-rich regime and a fuel-lean regime with an instability frequency around 500 Hz) were studied using a conditional imaging technique. It was found that unsteady heat release occurs in two different ways: pulsating combustion in the dome region and convection of reaction zones downstream of the jet-impingement region. Flame oscillations were induced by a periodic impingement of the jets on the centerplane of the chamber. Pressure fluctuations in the test section were roughly in phase with the global C[sub 2] emission, indicating that the instabilities were sustained by energy addition to the acoustic field. A two-dimensional distribution of the Rayleigh index computed for each unstable mode indicated that the fuel-lean mode was driven by the unsteady heat release in the dome region whereas the fuel-rich mode was driven by the flame oscillations downstream of the jet-impingement region. The transition from the fuel-lean to the fuel-rich instability featured a shift of driving mechanism. This study shows that even in the idealized geometry the coupling mechanisms leading to low-frequency combustion instabilities are not unique and illustrates the difficulty of devising predictive models.

OSTI ID:
6122453
Journal Information:
Combustion and Flame; (United States), Vol. 94:4; ISSN 0010-2180
Country of Publication:
United States
Language:
English