skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: IR surface electromagnetic-wave measurement of hydrogen adsorption and surface reconstruction on W(100)

Thesis/Dissertation ·
OSTI ID:6121354

Both the clean and hydrogen covered W(100) surfaces are probed with an inhomogenous electromagnetic mode which is bound to the metal surface. This Surface Electromagnetic Wave (SEW) is generated from a plane-wave spectrum by means of a grating directly etched into the metal surface. A second grating, spaced about 5 cm from the first, transforms the SEW back into a plane wave infrared beam. Near room temperature, the temperature dependence of the magnitude of the SEW signal agrees with the Drude model prediction using the d.c. resistivity. At high temperatures (>1000K) however, SEW signal is attenuated to such a large extent that plane wave radiation generated at the first grating can be detected as well. The first SEW spectrum of surface reconstruction was observed upon hydrogen adsorption on a W(100) sample maintained near room temperature. The reconstruction of the W(100)-H surface is checked and calibrated through LEED observations and thermal desorption measurements. The SEW signal is found to follow a sigmoid curve as a function of coverage. Intensity changes as large as 30% of the clean surface value occur as the state of the W(100)-H surface changes. This extreme sensitivity of the SEW attentuation length to surface reconstruction is shown to be consistent with changes in the diffuse surface scattering component of the conduction electron scattering time.

Research Organization:
Cornell Univ., Ithaca, NY (USA)
OSTI ID:
6121354
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English