skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Sedimentologic evolution of a submarine canyon in a forearc basin, Upper Cretaceous Rosario Formation, San Carlos, Mexico

Journal Article · · AAPG (Am. Assoc. Pet. Geol.) Bull.; (United States)
OSTI ID:6023607

The walls, floor, and fill of a submarine canyon are well-exposed near San Carlos, Mexico, in forecarc strata of the Upper Cretaceous Rosario Formation. The submarine canyon is about 7 km wide and at least 230 m deep and has eroded a minimum of 150 m into underlying fluvial red beds. It is unclear whether subaerial or submarine processes initiated the canyon cutting; however, marine processes, especially debris flows, modified the morphology of the submarine canyon. The submarine canyon fill and overlying slope deposits form two major fining-upward sequences. The first includes a 120 m thick lower conglomerate-sandstone unit (LCSU) at the base of the canyon fill overlain by a 50-110 m thick middle mudstone-sandstone unit (MMSU). The MMSU consists predominantly of mudstone and thin-bedded sandstone, but includes a channel filled with sandstone beds that form a fining- and thinning-upward sequence. This sequence is overlain by the second major sequence, a 0-60 m thick upper conglomerate-sandstone unit (UCSU), which is confined to three channels within the submarine canyon and passes gradationally upward into slope mudstone. Each of the two major fining-upward sequences records a gradual decrease in supply of coarse-grained sediment to the submarine canyon head. The first fining-upward sequence may correspond to a lowstand and subsequent rise in global sea level or, alternatively, may have resulted from local downdropping of the basin. The second fining-upward sequence does not correspond to global sea level fluctuations but is age-correlative with a drop then rise in relative sea level recognized by other workers 300-400 km to the north in the San Diego-Ensenada area. This sea level drop is inferred to have been a regional-scale tectonic event that affect the forearc basin along its length. 18 figures, 2 tables.

Research Organization:
Univ. of California, Santa Barbara (USA)
OSTI ID:
6023607
Journal Information:
AAPG (Am. Assoc. Pet. Geol.) Bull.; (United States), Vol. 72:6
Country of Publication:
United States
Language:
English