skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Case studies of chilled water storage

Journal Article · · Heating, Piping and Air Conditioning; (United States)
OSTI ID:6008041
 [1]
  1. Chicago Bridge and Iron Co., Oak Brook, IL (United States)

Centralized chilled water systems are commonly used to meet the air conditioning needs of colleges, universities, medical complexes, and other large campuses or district cooling facilities. Data from the Association of Higher Education Facilities Officers (APPA) indicate that over half its members operate central cooling plants. Various configurations are in use, including single and multiple central chilling plants serving single distribution systems, nonconnected miniature central systems, and combinations of one central and one or more satellite plants on a single distribution loop. Central plant chillers may be electric motor-driven centrifugal compressors, gas engine-driven centrifugal compressors, steam turbine-driven centrifugal compressors, heat-driven absorption chillers, or combinations of these types. The usual refrigerants are chlorofluorocarbons (CFCs); but alternatives such as HCFCs, HFCs, ammonia (NH[sub 3]), and absorption solutions may also be employed. Free cooling via cooling towers is sometimes used, directly or indirectly, during periods of relatively low ambient air temperatures. During any central plant capacity expansion, O and M, capital, and life cycle costs are among the major concerns, as are the increasingly critical issues of reliability, flexibility, safety, and the environment. Specifically, atmospheric ozone depletion and the CFC refrigerant issue are now impacting everyone involved in the air conditioning field. Anyone selecting or planning for new chiller capacity is faced with choosing from such options as CFCs, HCFCs, HFCs, ammonia, and absorption refrigeration. These choices have unique and serious drawbacks. Because of this chilled water storage is now experiencing increased application.

OSTI ID:
6008041
Journal Information:
Heating, Piping and Air Conditioning; (United States), Vol. 65:1; ISSN 0017-940X
Country of Publication:
United States
Language:
English