skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fingerprints of molecular structure and hydrogen bonding effects in the /sup 13/C NMR spectra of monosaccharides with partially deuterated hydroxyls

Journal Article · · J. Am. Chem. Soc.; (United States)
DOI:https://doi.org/10.1021/ja00333a010· OSTI ID:5911826

A new NMR approach to structure elucidation of carbohydrates in solution is presented. Examined in detail are the isotopic multiplets in /sup 13/C NMR spectra that result from partial deuteration of the hydroxyls for a series of monosaccharides and some of their deoxy and methyl glycoside derivatives in Me/sub 2/SO-d/sub 6/ solutions. Chemical shift and isotope effect data are presented for the pyranose and furanose forms of aldopentoses, aldohexoses, and ketohexoses. The results show that the magnitude of the ..gamma.. effect resulting from deuteration of a hydroxyl on a vicinal carbon atoms is sensitive to the relative geometric relationship, cis or trans, of the hydroxyls in vicinal diol arrays. Thus, the multiplet pattern for carbons 3 and 4 of the pyranose ring can serve as a fingerprint of molecular structure at the pentopyranose level. The aldopentoses and ketohexoses are amenable to structural analysis by this simple approach. Ambiguity will arise for pairs of aldohexoses related to each other by epimerization at C5. Intramolecular hydrogen bonding between the hydroxyls at C2 and C4 in ..cap alpha..-D-talopyranose gives rise to some unusual effects. A mechanism involving isotopic perturbation of the equilibrium between the hydrogen-bonded structures O4-H...O2-H and O2-H...O4-H is suggested as the possible source of these effects. Similarly, the extra splitting observed in the /sup 13/C resonance of C3 of ..beta..-D-fucofuranose are rationalized in terms of an equilibrium between the hydrogen-bonded structures C5-O5-H...O3-H and Cl-O1-H...O3-H. The approach of isotopic multiplets appears to be uniquely suited for the study of such structures.

Research Organization:
Hercules Inc., Wilmington, DE
OSTI ID:
5911826
Journal Information:
J. Am. Chem. Soc.; (United States), Vol. 106:21
Country of Publication:
United States
Language:
English