skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Satellites images, digitized topography, and the recognition of the Xela Caldera, Quezaltenango Valley, Guatemala

Conference · · Geological Society of America, Abstracts with Programs; (United States)
OSTI ID:5858768
 [1]; ;  [2];  [3]
  1. Pacific Lutheran Univ., Tacoma, WA (United States). Dept. of Earth Sciences
  2. Geological Survey, Flagstaff, AZ (United States)
  3. Los Alamos National Lab., NM (United States)

The authors propose, based on reconnaissance geology studies and interpretation of landforms as depicted by Landsat Thematic Mapper (TM) images combined with digitized topography, that the Quezaltenango basin of Guatemala is part of a caldera. The Quezaltenango basin is an elliptical depression, about 12 by 25 km and about 500 m deep. The proposed Xela Caldera extends beyond the basin more than 10 km to the north. The geomorphological features of the area that are typical of a geologically young large-scale caldera include bounding walls that have steep interior and gentle exterior slopes; broad flat areas at the base of the walls; at least one large block, about 3 by 12 km, that only partly floundered as the caldera collapsed; resurgence of a younger volcanic dome, flow and small-scale caldera complex (last active in 1818); younger volcanoes located along the structural margin of the major caldera (one of which is currently active) lobate features on the caldera margins that may indicate a multiple sequence of eruptions; and an active, high-temperature geothermal system. The valley is coincident with a gravity low. Extensive ash-flow tuff sheets that have no identified source are located north of the caldera, and may be the outflow deposits. The Xela caldera is similar in size to the Atitlan caldera, which lies about 50 km southeast of Quezaltenango. The Xela Caldera, if confirmed by future studies, may contain undiscovered geothermal resources, may present a significant geologic hazard to the more than 400,000 people who occupy the Quezaltenango valley, and may be a new member of the list of magmatic systems that have the capability to change global climate for several years.

OSTI ID:
5858768
Report Number(s):
CONF-921058-; CODEN: GAAPBC
Journal Information:
Geological Society of America, Abstracts with Programs; (United States), Vol. 24:7; Conference: 1992 annual meeting of the Geological Society of America (GSA), Cincinnati, OH (United States), 26-29 Oct 1992; ISSN 0016-7592
Country of Publication:
United States
Language:
English