skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ca/sup 2 +/-dependent and Ca/sup 2 +/-independent pathways for release of arachidonic acid from phosphatidylinositol in endothelial cells

Journal Article · · J. Biol. Chem.; (United States)
OSTI ID:5856940

The pathways for degradation of phosphatidylinositol (PI) were investigated in sonicated suspensions prepared from confluent cultures of bovine pulmonary artery endothelial cells. The time courses of formation of /sup 3/H-labeled and /sup 14/C-labeled metabolites of phosphatidyl-(/sup 3/H)inositol ((/sup 3/H)Ins-PI) and 1-stearoyl-2-(/sup 14/C) arachidonoyl-PI were determined at 37/sup 0/C and pH 7.5 in the presence of 2 mM EDTA with or without a 2 mM excess of Ca/sup 2 +/. The rates of formation of lysophosphatidyl-(/sup 3/H)inositol ((/sup 3/H)Ins-lyso-PI) and 1-lyso-2-(/sup 14/C) arachidonoyl-PI were similar in the presence and absence of Ca/sup 2 +/, and the absolute amounts of the two radiolabeled lyso-PI products formed were nearly identical. This indicated that lyso-PI was formed by phospholipase A1, and phospholipase A2 was not measurable. In the presence of EDTA, (/sup 14/C)arachidonic acid release from 1-stearoyl-2-(/sup 14/C)arachidonoyl-PI paralleled release of glycerophospho-(/sup 3/H)inositol ((/sup 3/H)GPI) from (/sup 3/H)Ins-PI. Formation of (/sup 3/H)GPI was inhibited by treatment with the specific sulfhydryl reagent, 2,2'-dithiodipyridine, and this was accompanied by an increase in (/sup 3/H)Ins-lyso-PI. In the presence of Ca/sup 2 +/, (/sup 14/C) arachidonic acid release from 1-stearoyl-2-(/sup 14/C)arachidonoyl-PI was increased 2-fold and was associated with Ca/sup 2 +/-dependent phospholipase C activity. Under these conditions, (/sup 3/H)inositol monophosphate production exceeded formation of (/sup 14/C)arachidonic acid-labeled phospholipase C products, diacylglycerol plus monoacylglycerol, by an amount that was equal to the amount of (/sup 14/C)arachidonic acid formed in excess of (/sup 3/H)GPI. Low concentrations of phenylmethanesulfonyl fluoride (15-125 microM) inhibited Ca/sup 2 +/-dependent (/sup 14/C)arachidonic acid release, and the decrease in (/sup 14/C) arachidonic acid formed was matched by an equivalent increase in /sup 14/C label in diacylglycerol plus monoacyclglycerol.

Research Organization:
St. Louis Univ. School of Medicine, MO
OSTI ID:
5856940
Journal Information:
J. Biol. Chem.; (United States), Vol. 262:27
Country of Publication:
United States
Language:
English