skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Copper transport in the yeast Saccharomyces cerevisiae

Conference · · Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States)
OSTI ID:5849321

Biochemical processes involved in the movement of copper (Cu) into and out of the yeast Saccharomyces Cerevisiae have been investigated. Overall uptake of Cu was measured by disappearance of Cu from the reaction mixture by atomic absorption sensitive to 10/sup -10/M. The process of Cu influx is composed of a prerequisite binding and subsequent transport. The binding is non-energetic but is competitively inhibited by zinc(Zn). Transport is energetic as shown by an increased influx in the presence of added glucose. This process is prevented by 2,4-dinitrophenol(DNP). Cu influx is accompanied by an exchange for potassium(K) in a ratio of K:Cu=2:1. The process of Cu efflux involves a second type of binding site, probably of low affinity but large capacity. The presence of glucose causes the binding of extracellular Cu to these sites in a non-energy-dependent mechanism which prevents Cu efflux. Zn does not compete. DNP has no effect. The K:Cu ratio of 4:1 observed in the absence of glucose suggests a lowered net Cu uptake as a result of concomitant efflux activity. Finally, in the absence but not the presence of glucose, the pH of the extracellular solution increases. These observations are consistent with the idea that (a) yeast membrane has two Cu-binding sites, one of which participates in influx and one in efflux; (b) Cu exchanges with K during influx and with protons during efflux.

Research Organization:
Univ. of Southern Colorado, Pueblo
OSTI ID:
5849321
Report Number(s):
CONF-870644-
Journal Information:
Fed. Proc., Fed. Am. Soc. Exp. Biol.; (United States), Vol. 46:6; Conference: 78. annual meeting of the American Society of Biological Chemists conference, Philadelphia, PA, USA, 7 Jun 1987
Country of Publication:
United States
Language:
English