skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlling bimolecular reactions: Mode and bond selected reaction of water with hydrogen atoms

Journal Article · · Journal of Chemical Physics; (USA)
DOI:https://doi.org/10.1063/1.460578· OSTI ID:5775111
; ;  [1]
  1. Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (US)

Vibrational overtone excitation prepares water molecules in the {vert bar}13{r angle}{sup {minus}}, {vert bar}04{r angle}{sup {minus}}, {vert bar}12{r angle}{sup {minus}}, {vert bar}02{r angle}{sup {minus}}{vert bar}2{r angle}, and {vert bar}03{r angle}{sup {minus}} local mode states for a study of the influence of reagent vibration on the endothermic bimolecular reaction H+H{sub 2}O{r arrow}OH+H{sub 2}. The reaction of water molecules excited to the {vert bar}04{r angle}{sup {minus}} vibrational state predominantly produces OH({ital v}=0) while reaction from the {vert bar}13{r angle}{sup {minus}} state forms mostly OH({ital v}=1). These results support a spectator model for reaction in which the vibrational excitation of the products directly reflects the nodal pattern of the vibrational wave function in the energized molecule. Relative rate measurements for the three vibrational states {vert bar}03{r angle}{sup {minus}}, {vert bar}02{r angle}{sup {minus}}{vert bar}2{r angle}, and {vert bar}12{r angle}{sup {minus}}, which have similar total energies but correspond to very different distributions of vibrational energy, demonstrate the control that initially selected vibrations exert on reaction rates. The local mode stretching state {vert bar}03{r angle}{sup {minus}} promotes the H+H{sub 2}O reaction much more efficiently than either the state having part of its energy in bending excitation ({vert bar}02{r angle}{sup {minus}}{vert bar}2{r angle}) or the stretching state with the excitation shared between the two O--H oscillators ({vert bar}12{r angle}{sup {minus}}). The localized character of the vibrational overtone excitation in water has permitted the first observation of a bond selected bimolecular reaction using this approach.

OSTI ID:
5775111
Journal Information:
Journal of Chemical Physics; (USA), Vol. 94:7; ISSN 0021-9606
Country of Publication:
United States
Language:
English