skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-alumina portland cement from lime-soda sinter residue

Thesis/Dissertation ·
OSTI ID:5752642

A byproduct for the Ames Lime-Soda Sinter Process for recovering alumina from power plant fly ash was investigated as a cement raw material. This investigation dealt with a determination of the best method to utilize the process residue from both a clinker quality and an economic perspective. The experimental work was divided into 4 major areas; characterization of the sinter residue, laboratory burnability tests, physical testing of produced residue-cements, and a kinetic study of C{sub 3}S formation. Other important topics were considered such as the effect use of the sinter residue has on the energy requirements of a commercial cement kiln and on the economics of a combined lime-soda sinter, cement plant. It was found that a low-alumina, C{sub 3}S-bearing cement could be readily produced from a raw mix containing significant amounts of sinter residue, which was found to consist of {beta}-C{sub 2}S, C{sub 3}A, CaCO{sub 3}, MgO, and C{sub 4}AF. Based on an energy balance using a typical cement feed containing around 75%{sub w} limestone as a reference, use of the residue in a cement feed allows for a 50% reduction in required energy for the kiln and a 32%{sub w} increased throughput. A laboratory produced residue-cement was found to meet all of the specifications for a Type 5 portland cement. The rate of return found for a combined lime-soda sinter and cement facility processing 43,800 tons per year (TPY) of alumina and 530,400 TPY of portland cement was 4.7%.

Research Organization:
Iowa State Univ. of Science and Technology, Ames, IA (USA)
OSTI ID:
5752642
Resource Relation:
Other Information: Thesis (Ph. D.)
Country of Publication:
United States
Language:
English