skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Specific uptake, dissociation, and degradation of /sup 125/I-labeled insulin in isolated turtle (Chrysemys dorbigni) thyroid glands

Journal Article · · Gen. Comp. Endocrinol.; (United States)

Thyroid glands from turtles (Chrysemys dorbigni) pretreated with potassium iodide were incubated with /sup 125/I-insulin in the presence or absence of unlabeled insulin, in order to study its specific uptake. At 24 degrees, the specific uptake reached a plateau at 180 min of incubation. The dose of bovine insulin that inhibited 50% of the /sup 125/I-insulin uptake was 2 micrograms/ml of incubation medium. Most of the radioactive material (71%) extracted from the gland, after 30 min incubation with /sup 125/I-insulin, eluted in the same position as labeled insulin on Sephadex G-50. Only 24% eluted in the salt position. After 240 min incubation, increased amount of radioactivity appeared in the Na/sup 125/I position. When bovine insulin was added together with the labeled hormone, a substantial reduction of radioactivity was observed in the insulin and Na/sup 125/I elution positions. Dissociation studies were performed at 6 degrees in glands preincubated with /sup 125/I-insulin either at 24 or 6 degrees. The percentage of trichloroacetic acid (TCA)-soluble radioactive material in the dissociation medium increased with incubation time at both temperatures. However, the degradation activity was lower at 6 than at 24 degrees. The addition of bovine insulin to the incubation buffer containing /sup 125/I-insulin reduced the radioactive degradation products in the dissociated medium. Chloroquine or bacitracin inhibited the degradation activity. Incubation of thyroid glands with /sup 125/I-hGH or /sup 125/I-BSA showed values of uptake, dissociation, and degradation similar to those experiments in which an excess of bovine insulin was added together with the labeled hormone. Thus, by multiple criteria, such as specific uptake, dissociation, and degradation, the presence of insulin-binding sites in the turtle thyroid gland may be suggested.

OSTI ID:
5734180
Journal Information:
Gen. Comp. Endocrinol.; (United States), Vol. 2
Country of Publication:
United States
Language:
English