skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhanced incorporation of tritium into glycolate during photosynthesis by tobacco leaf tissue in the presence of tritiated water

Journal Article · · Plant Physiol.; (United States)
DOI:https://doi.org/10.1104/pp.69.1.192· OSTI ID:5734082

Tobacco (Nicotiana tabacum var. Havana Seed) leaf discs were allowed to photosynthesize for 3 to 20 minutes in the present of /sup 14/CO/sub 2/ and /sup 3/H/sub 2/O. Several metabolites of the Calvin cycle and photorespiratory pathway were isolated and purified and the /sup 3/H:/sup 14/C values measured. Glycolate had a 5- to 10-fold higher /sup 3/H:/sup 14/C than the Calvin cycle intermediate 3- phosphoglyceric acid, or its end product sucrose. The glycolate oxidase inhibitor ..cap alpha..-hydroxy-2-pyridinemethanesulfonic acid caused glycolate to accumulate in the tissue and lowered the /sup 3/H:/sup 14/C in glycolate to a value similar to that in 3-phosphoglyceric acid. Phosphoglycolate, a possible precursor of glycolate arising from the Calvin cycle, exhibited a /sup 3/H:/sup 14/C value similar 3-phosphoglyceric acid under all conditions. The finding of a /sup 3/H enrichment in glycolate suggests that another source of glycolate, possibly the reduction of glyoxylate, exists in leaf tissue. Analyses of incorporation of /sup 3/H into the pro-2R and pro-2S hydrogens of glycolate, in the presence and absence of ..cap alpha..-hydroxy-2-pyridinemethanesulfonic acid, suggest an alternative source of glycolate. Biochemical mechanisms to account for /sup 3/H enrichment into glycolate are evaluated.

Research Organization:
The Connecticut Agricultural Experiment Station, New Haven
OSTI ID:
5734082
Journal Information:
Plant Physiol.; (United States), Vol. 69:1
Country of Publication:
United States
Language:
English